Received: April 7, 1990; accepted: October 17, 1990

CYCLIC ARYLENEAZACHALCOGENENES

PART III [1] SYNTHESIS OF POLYFLUORINATED 2,1,3-BENZOTHIA-(SELENA)DIAZOLES

Andrey V. ZIBAREV * and Alexey O. MILLER

Institute of Organic Chemistry, Novosibirsk 630090 (USSR)

SUMMARY

1-(4-X-Tetrafluorophenyl)-3-trimethylsilyl-1,3-diaza-2thiaallenes (X = H, CH₃, Br, F, CF₃) treated with CsF in acetonitrile or THF cyclized to 6-X-4,5,7-trifluoro-2,1,3-benzothiadiazoles whose reduction led to the corresponding 1,2-diaminobenzenes. Cyclization of the latter with SeCl₄ gave <math>6-X-4,5,7trifluoro-2,1,3-benzoselenadiazoles.

RESULTS AND DISCUSSION

Polyfluorinated 2,1,3-benzothia(selena)diazoles have been unknown earlier, except for the 4,5,6,7-tetrafluoro-derivative synthesized by cyclization of 1,2-diamino-3,4,5,6-tetrafluorobenzene with the tetrahalide of the respective chalcogen [2]. We have found that a convenient general method for the synthesis of 6-X-4,5,7-trifluoro-2,1,3-benzothiadiazoles (1) in 50 to 85 % yields is the intramolecular nucleophilic cyclization [3] of 1-(4-X-tetrafluorophenyl)-3-trimethylsilyl-1,3-diaza-2-thiaallenes (2) [4] under the action of CsF in acetonitrile (X = H, CH₃, Br, F) or THF (X = CF₃). This is the new example of synthesis of 2,1,3-benzothiadiazoles without the use of 1,2-diaminobenzenes. The reaction of arylamines with (NSCl)₃ including the vicarious nucleophilic substitution of hydrogen was used for this purpose previously [5].

0022-1139/90/\$3.50

The reduction of compounds I with $SnCl_2$ or $NaBH_4$ (X = CF₃) afforded corresponding polyfluorinated 1,2-diaminobenzenes (3) in 75 to 85 % yields. The reactions of compounds 3 with SeCl₄ in monoglyme in the presence of pyridine led to 6-X-4,5,7-tri-fluoro-2,1,3-benzoselenadiazoles (4) in 85 to 90 % yields.

X = H (a), CH_3 (b), Br (c), F (d), CF_3 (e)

EXPERIMENTAL

The ¹H and ¹⁹F NMR spectra were recorded on a Varian A56/60A spectrometer (60 and 56.4 MHz respectively, internal standards HMDS and C_6F_6); the mass-spectra (EI, 70 eV), on a Finnigan MAT MS-8200 spectrometer; the UV-visible spectra, on a Specord UV-Vis instrument.

Caesium fluoride was calcinated immediately before use. Compounds 1a,b,d were reduced with SnCl₂/HCl to compounds 3a,b,d under the conditions described in [6]. The compounds 1d, 3a,d and 4d were known previously [2,7,8]. The syntheses given below, except for that of compound 3e, were carried out under argon in absolute solvents. The data for compounds synthesized are listed in Tables 1 and 2.

TABLE 1

The Compounds Synthesized

Com-	Yield,	M.p., ^o c a	Formula	<u>M</u> ⁺ , m/z	b
pound	%	B.p., C/mm		measured	oalculated
1a	63	37-38	C ₆ HF ₃ N ₂ S	189.9799	189.9812
1 b	87	40-41	C7H3F3N2S	203.9962	203.9969
10	66	27~28.5	C ₆ BrF ₃ N ₂ S	267.8904	267.8918
1a	60	55-56 ⁰	° ₆ ₽₄N ₂ S		
1e	52	94-95/13	C7F6N2S	257.9682	257.9686
3a	82	75-76 ^d	CHEF3N2	162.0391	162.0405
3ъ	81	98-99	C7H7F3N2	176.0559	176.0561
3 d	85	130–131 ^e	C ₆ H ₄ F ₄ N ₂		
3 e	75	33.5-34.5	C7H4F6N2	230.0267	230.0278
4 a	88	169-170	C ₆ HF ₃ N ₂ Se	237.9238	237.9257
4 b	85	161-162	C7H3F3N2Se	251.9399	251.9413
4 d	91	202~203 ^I	C ₆ F ₄ N ₂ Se		
4 e	85	144-145	C7F6N2Se	305.9130	305.9138
a Comp	ounds 4,	in a sealed o	papillary r compounds 4	80 _{5e}	<u></u>

^b For compound 1c, ⁷⁹Br; for compounds 4, ⁸⁰Se
^c 51-52° [2]
^d 74.6-75.2° [7]
^e 131-131.5° [8]
^f 202-203° [2]

6-X-4,5,7-Trifluoro-2,1,3-benzothiadiazoles (1a-e)

To a stirred suspension of 1.52 g (0.01 mol) of CsF in 200 ml of acetonitrile was added dropwise during 2 h, with boiling, a solution of 0.01 mol of compound 2a-d in 30 ml of acetonitrile (in the case of 2e, the same amount of THF was used). The mixture was boiled for 0.5 h, cooled to 20° C, filtered and solvent was distilled off at reduced pressure. The residue was chromatographed on an Al₂O₃ column (hexane-ether 3:1) and sublimed or distilled in vacuum. Compounds 1a-d are colourless crystals; 1e, a colourless liquid.

TABLE	2
-------	---

Com- pound	NMER ¹ H	chemica	al shif	ts, ð 19 _F	, ppm ^a	UV, λ_{max} , nm, (lg ϵ) ^b
1a	7.30		41.7,	27.6,	11.4	333(3.44, sh), 307(4.06), 302(4.03), 296(4.02)
1 Ъ	2.39		35.9,	24.5,	10.0	343(3.33, sh), 314(4.05), 308(4.01), 302(4.01)
10			48.6,	33.6,	14.5	316(4.04), 308(4.01)
1đ				14.3,	9.3	326(3.39, sh), 308(3.99), 302(3.97), 296(3.94)
1e			105.5,	44.9,	22.9, 14.2	329(3.45), 305(3.92), 300(3.90), 294(3.88)
3a	6.33,	3.41	24.9,	14.4,	-1.8	283(3.32), 238(4.00)
3 b	3.33,	2.06	19.7,	9.1,	-2.1	285(3.27), 233(4.05)
3 e	4.03,	3.22	107.4,	23.3,	14.2, -1.5	292(3.68), 254(4.10)
4 a	7.66		42.1,	24.3,	10.7	328(4.24), 243(3.87)
4b 4a	2.30		36.5,	21.6, 13.7,	10.9 6.7	334(4.18), 234(3.76, sh) 327(4.13), 237(3.65)
4 e			107.1,	46.6,	18.3, 13.6	330(4.07), 248(3.87)

NMR and UV Spectral Data

^a Solvents: 1a,b,c,e, **3**a,b,e, CDCl₃; 1d, CCl₄; 4a, DMSO-d₆; 4b,d,e, dioxane.

^b In ethanol, 1d in heptane.

5-Trifluoromethyl-3,4,6-trifluoro-1,2-diaminobenzene (3e)

To a stirred solution of 0.01 mol of compound 1e in 30 ml of ethanol was added portionwise, at 20° C, 0.02 mol of NaBH₄. After 1 h the solution was acidified with HCl, filtered, neutralized with aqueous Na₂CO₃ and extracted with ether. The extract was

362

dried over CaCl₂, the solvent distilled off at reduced pressure and residue sublimed in vacuum. Compound **3**e is colourless crystals.

6-X-4,5,7-Trifluoro-2,1,3-benzoselenadiazoles (4a,b,d,e)

To a stirred solution of 0.003 mol of compound 3a,b,d,e and 0.95 g (0.012 mol) of pyridine in 15 ml of monoglyme was added dropwise at $0^{\circ}C$ a solution of 0.66 g (0.003 mol) of SeCl₄ in 5 ml of monoglyme. The mixture was stirred for 1 h at $20^{\circ}C$, the solution was filtered, the solvent distilled off at reduced pressure, the residue recrystallized from ethanol and sublimed in vacuum. Compounds 4 are yellow crystals.

REFERENCES

- 1 Part II see N.E. Petrachenko, V.I. Vovna, A.V. Zibarev and G.G. Furin, Khim. Geterotsikl. Soedin., in press.
- 2 A.V. Zibarev, O.M. Fugaeva, A.O. Miller, S.N. Konchenko, I.K. Korobeinicheva and G.G. Furin, Khim. Geterotsikl. Soedin., in press.
- 3 G.G. Yakobson, T.D. Petrova and L.S. Kobrina, Fluor. Chem. Rev., 7 (1974) 125.
- 4 A.O. Miller, A.V. Zibarev, M.A. Fedotov and G.G. Furin, Zh. Obsch. Khim., 59 (1989) 586.
- 5 G. Domschke and I. Heimbold, Z. Chem., 27 (1987) 31.
- 6 V.G. Pesin and V.A. Sergeev, Khim. Geterotsikl. Soedin., (1968) 1001.
- 7 G.C. Finger, F.H. Reed, D.M. Burness, D.M. Fort and R.R. Blough, J. Am. Chem. Soc., <u>73</u> (1951) 145.
- 8 G.M. Brooke, J. Burdon and J.C. Tatlow, J. Chem. Soc., (1961) 802.